

The Thinking-Learning Universe

Where Cosmic Principles
Become Cognitive Habits

A Practical Guide for
the Einsteinian Classroom

Dr Cas Olivier

Chapter 1

The Cosmic Origin of Learning

1.1. The Question Education Never Settled

Every profession stands on solid ground. Medicine observed illness and healing in the biology of the human body. Engineering observed physical forces. Mathematics observed numbers, operations, relations, combinations, and generalisations. Law is grounded in the regulation of human relationships. So are all the other professions solidly grounded on their foundations.

Education, however, borrowed from psychology to describe human behaviour and cognition. Sociology was used to explain systems and relationships, not how meaning coheres in the mind. Philosophy was used to articulate the meaning and purpose of human experience, not the architecture of cognition. Economics was used to measure and judge outcomes — marks, performance, achievement — treating results as causes while the thinking behind them remained invisible. Administrative and statistical frameworks were used to measure procedural compliance, not comprehension of meaning.

The argument is not a call to remove psychology, sociology, philosophy or economics, from teacher education. On the contrary, when properly repositioned, these disciplines play an essential role. They illuminate context, ethics, development, systems, and consequence — each from its own legitimate vantage point. What they cannot do, and were never designed to do, is define the internal mechanics of how thinking forms, stabilises, and transfers in the act of learning itself. Only when education reclaims its internal grounding can these supporting disciplines fulfil their role with greater clarity and impact.

Over time, education mistook those external lenses for internal laws. What should have been supportive became substitutive. The system became self-confirming: what could not be measured was sidelined, and what was sidelined was assumed not to exist. Education learned to manage learning without understanding it. These perspectives could impossibly be the foundation of learning — yet they were elevated into that role.

This raises the unavoidable question: *What, then, should education be grounded in?*

Let's begin at Step Zero — before knowledge, definitions, or answers existed when only nature was the textbook.

My hypothesis was simple: if underlying principles of learning exist — as real as those governing medicine, engineering, or physics — then they must be discoverable, not constructed. They would precede theory, method, or terminology, and reveal themselves through consistent patterns of human learning across time and context. For this reason, I began by observing the work of outliers whose discoveries permanently reshaped how the world is understood.

I began with Nicolaus Copernicus, Archimedes, and Isaac Newton. Yet the hypothesis remained incomplete. If the skywatchers — lying on their backs, tracing the heavens night after night long before formal science existed — did not follow the same learning principles, then the hypothesis would collapse. So, they, too, had to be included.

It was in studying Albert Einstein that a deeper coherence emerged. Learning appeared as a universal process — one that operates wherever understanding unfolds, across scale, time, and context.

1.2. The First Principle of Learning — Daydreaming

When the brain is not externally tasked, instructed, or constrained, it does not fall idle. It naturally drifts into a default mode — a state characterised by free association, memory weaving, future simulation, pattern rehearsal, and the quiet consolidation of meaning. In this mode, the brain is not operating linearly. There is no task-time, no sequence to complete, and no endpoint to reach. Thought expands and contracts rhythmically: memories surface and dissolve, future possibilities flicker and fade, patterns repeat, overlap, and reorganise, and meaning is rehearsed without direction. In this state, the brain allows daydreaming to unfold without directing it, relinquishing control over its path or duration, until curiosity naturally draws attention back into focus.

Principle 1: The brain's default mode is daydreaming.

As human beings, skywatchers daydreamed through past experiences and imagined possible futures. Daydreaming is not a deliberate act, nor a step toward learning, but a natural movement of the mind when attention is unclaimed.

Archimedes was not setting out to make a discovery. He was bathing — immersed in an ordinary moment, his mind unoccupied by a specific problem, drifting in a state of mental openness. As he lowered himself into the water, something quietly disturbed that openness. The rising water revealed a relationship he had not been seeking.

In that moment, attention snapped into focus. What followed was not planned thinking, but sudden coherence. This was not daydreaming. It was the moment daydreaming ended — when curiosity interrupted drift and orientation began. That interruption is Step Zero.

Isaac Newton was likely doing nothing extraordinary at all — sitting quietly, minding his own affairs, his thoughts drifting without a specific task to complete - daydreaming. Then the apple fell. In his off time, Einstein likely daydreamed, probably daydreamed about ordinary things without knowing why they mattered yet or not.

In this sense, daydreaming is not the absence of thinking but its background geometry. It is the mind curving inward when no external gravity is applied. Time, in this state, is not experienced as sequence but as elasticity — a rhythmic stretching and compression rather than a forward march. Simultaneously, ideas are not arranged in steps or hierarchies but exist as relational fields, expanding, overlapping, curving into one another and returning to others. Daydreaming does not initiate learning. It does not generate direction or commitment. It maintains coherence, but it does not move toward discovery. The mind may be active, but it is not engaged. Daydreaming is a state, not a strategy.

1.3. The Second principle of Learning - Curiosity as Gravity

The skywatchers had no books and no teachers. Yet they returned night after night, drawn back by wandering stars, shifting horizons, and changing seasons. Learning did not begin because they followed a formula. It began because curiosity slowly gathered weight, pulling their attention back again and again.

When curiosity first took hold, the situation was high in complexity and low in insight. Nothing yet cohered as a whole. The sky offered too many patterns and too few explanations. The skywatchers stood on the brink of change — not by reducing complexity, but by remaining in its pull long enough for coherence to emerge. Over time, insight reversed the balance. What was once overwhelming became intelligible. Complexity diminished as meaning increased. What began as confusion stabilised into understanding. What had been diffuse attraction condensed into focus.

Centuries later, Copernicus encountered the same gravitational pull of curiosity in a different guise. His curiosity was not sparked because heliocentrism lacked internal logic, but because what he observed refused to settle into the inherited frame of understanding. The heavens kept pulling at his attention. Again, there were no textbooks and no answers to consult — only the slow, repetitive motions of the sky, returning night after night, holding his curiosity in tension as his thoughts moved between what had been seen and what could not yet be reconciled.

Albert Einstein's discoveries followed the same law. His curiosity was drawn not by novelty, but by persistent mismatches — light that would not behave, time that would not remain absolute, motion that refused to align with established explanations. These unresolved relationships did not release his attention. Ordinary daydreaming gave way to sustained curiosity, held in place by questions that could not be dismissed. What eventually emerged was not a correction of earlier physics, but a deeper coherence — one in which space and time themselves curved to accommodate what his curiosity had long been circling.

Principle 2: The brain lets curiosity take over and take ownership of the problem and won't let go when it senses dissonance that needs a solution.

Across all these examples, the same principle reveals itself. Learning begins not with answers, but with curiosity strong enough to hold attention in orbit. It begins when complexity grips the mind long enough for orientation to occur — when attention turns toward something that has not yet been understood. From this moment of orientation, curiosity continues to act as gravity, while thinking seeks coherence, moving through successive reorganisations until a stable big-picture understanding can form.

This moment is Step Zero. Step Zero is not an early version of the answer, nor a small picture of the final insight. It is the moment attention yields to curiosity and orients toward meaning. It occurs before planning, before strategy, before problem-solving begins — and it ends the moment thinking commits to its first deliberate orbit.

Step Zero is not a teaching method, but a natural neural movement initiated by curiosity. It is the brain's quiet readiness to engage — the orienting state that makes thinking possible. Curiosity supplies the pull; Step Zero marks the moment attention yields to that pull. Because this occurs before intention, strategy, or action, it exists prior to Step One and is therefore named Step Zero.

1.4. The Third Principle of Learning — Motion Beyond Control

This movement will be recognisable in the work of the skywatchers, and later in the breakthroughs of Copernicus, Newton, and Einstein — not because it can be observed directly, but because its traces become visible at moments where thinking reorganises itself beyond linear progression.

Principle 3: The brain naturally jumps from one idea to the next to explores new fields, sometimes out of control and sometimes consciously directed.

This movement occurs in daydreaming and active curiosity, as attention drifts across loosely related ideas and briefly slips toward unexpected connections, allowing relationships to reorganise without conscious control. For this reason, it cannot be treated as a step in a sequence. It is not a transition. It is a way thinking moves.

I sometimes refer to this movement as *hyperlinking* — moments when a word, image, or idea suddenly activates a connection to another orbit of thinking, often without warning or immediate explanation. Some of these links arise unintentionally, as in relaxed or diffuse states where attention loosens and the mind wanders freely. Others are intentional, occurring during active sense-making, when the mind deliberately ranges outward in search of insight or creative recombination. In both cases, the outcome cannot be predicted in advance. The difference lies not in control, but in orientation. This is often described as “out-of-the-box thinking,” but the box is not abandoned. It is traversed differently — by linking across orbits rather than moving step by step within one.

The most accurate way to understand this movement is as *relational orbit-switching* — intuitively experienced as the mind hyperlinking between orbits. In this motion, the brain samples multiple meaning-fields, tests distant relationships, and allows non-obvious connections to collide. Like a radar sweeping its environment to detect a viable trajectory, the mind scans relational space in search of coherence. The purpose of this movement is not to maintain focus, but to explore relational space. Novelty is generated here not through persistence, but through breadth.

This is also why the motion must remain beyond control — and why it must do so by necessity. It is not governed by executive control, and if it were, its function would collapse. Should the brain be able to direct this motion deliberately, thinking would narrow into linear recall. Novelty would disappear. Insight would be replaced by repetition.

Creative understanding depends on loosened control, temporary instability, and a tolerance for unfinished thought. The mind must be allowed to wander relationally before it can settle coherently. This explains why insight so often appears suddenly, seemingly “out of nowhere,” after periods of apparent wandering.

It is therefore important to distinguish clearly between related but different movements. Daydreaming provides an open field. Relational orbit-switching provides exploratory motion within that field. Curiosity introduces gravitational capture, narrowing attention toward a question. Insight occurs when a new orbit stabilises suddenly and holds. The jumping that precedes this moment is not noise. It is search.

This principle does not yet explain creativity itself — that will be returned to explicitly. What it establishes is the necessary motion without which creativity cannot occur. Before insight can form, thinking must be allowed to move beyond control.

1.5. The Fourth Principle of Learning — Coherence Through Iterative Refinement

The skywatchers could not jump straight from Step Zero to answers. Night after night, they asked questions based on what they saw in the sky. When an idea did not make things clearer, they did not hold on to it. They changed it, improved it, or asked a better question. The sky itself

became their teacher, showing which ideas helped understanding and which ones caused confusion. Progress only happened when a new explanation made things simpler and clearer.

Copernicus followed the same path, starting from a point where he did not yet have answers. His early ideas explained some movements of the planets but made other things more confusing. Guided by curiosity, he tested each idea by looking at how well it fit with the whole system, not just one part. When an idea made the picture more complicated, he let it go, even if it was widely accepted. When an idea made everything fit together more clearly, he kept it and built on it. Over time, his questions led to a new way of understanding the universe. The solution lasted not because it explained everything, but because it made the whole system clearer.

Newton's thinking began with a moment of curiosity beneath the apple tree. From this starting point, he noticed that the same pattern seemed to guide falling objects everywhere. Each observation raised new questions that kept his thinking active. Over time, all these questions came together and formed one clear idea — gravity — and the confusion turned into understanding.

Einstein's thinking began in a similar way. From Step Zero, curiosity oriented his attention, and imagination provided the space in which possibilities could be explored. He asked simple but powerful questions — such as what it might feel like to travel alongside a beam of light. At first, there were no answers, only curiosity and imagined scenarios.

Within this imaginative space, he explored many possibilities, retaining those that cohered and releasing those that did not. When progress stalled, he did not calculate harder; he reformulated another question. Each failed answer redirected inquiry, progressively pruning the field of thought until only ideas capable of sustaining coherence remained. Relativity did not emerge as a final answer, but as the only framework that reduced complexity while preserving structure.

Across all these minds, the same architecture recurs. Guided by critical questioning, the brain generates and tests provisional answers, retaining only those that lower complexity and deepen insight. It is a process and no answer is final until the final answer fit into place.

Principle 4: The brain, driven by curiosity, generates directed questions when seeking a solution.

1.6. The Fifth Principle of Learning — The Logical Alignment

Principle 5: The brain keeps adjusting and reorganising newly generated insight to make sense of the bigger picture.

The skywatchers could not leap from their questions and answers straight to a complete understanding of the universe. Progress only happened as their questions and answers slowly fit together, allowing them to build a bigger picture piece by piece in their minds. Through comparisons and repeated observations and discussions they organised the scattered points of light into patterns that made sense to them.

Through this process, they arrived at a model in which the Earth appeared to stand still while the heavens moved around it. This explanation restored order. It matched what they could see, supported farming and calendars, and allowed them to predict seasons and eclipses. Even

though this picture of a flat, Earth-centred universe did not last over time, it made sense to them because their questions and answers had come together in a clear and connected way, producing a genuine moment of insight.

Copernicus' thinking followed the same alignment process. Existing planetary models could explain some observations, but only by multiplying exceptions and workarounds. He tested each proposed adjustment against the behaviour of the whole system. The final big picture solution appeared when —placing the Sun at the centre—reduced overall inconsistency and brought the motions into a more coherent pattern.

Newton's thinking followed the same stabilising process. Separate explanations for falling objects, orbiting bodies, and tidal motion initially appeared sufficient, yet each increased fragmentation rather than coherence. These explanations failed when tested against the behaviour of the system as a whole. When gravity unified these motions under a single principle, complexity collapsed into insight.

Einstein allowed unanswered questions to remain active in his mind over time. As he continued working, individual answers did not stand alone; they began to reorganise themselves. Each new answer adjusted the position of the others, gradually aligning into a single, coherent picture in which space and time could be understood together — not only in his mind, but in the structure of the physical world itself. His insight emerged not from a single breakthrough, but from answers falling into alignment.

Across all of these minds, the same architecture repeats. Guided by established orientation and critical questioning, the brain generates provisional answers and continuously tests whether they strengthen or weaken coherence. The brain does not accept ideas passively. It senses whether an idea strengthens structure or fragments it. Provisional answers are held lightly, adjusted readily, and released when they no longer serve coherence. This alignment process is self-correcting. When progress stalls, the brain does not increase pressure or force closure. It returns — reassessing answers, revisiting questions, and checking whether the original orientation is still being honoured. Logical alignment is not about being right. It is about staying coherent.

This is not a drive toward final answers, but a discipline of coherence. Ideas are held provisionally, tested against reality, refined through use, and discarded when they no longer strengthen the structure of understanding. In this process, failure is not evidence of inadequacy but a form of directional feedback — a position captured succinctly by Thomas Edison, who noted that each failed attempt revealed another way the solution could not work, bringing the system closer to alignment rather than closure.

1.7. The Sixth Principle of Learning — Creative Solutions

The insight gained by the skywatchers did not grow smoothly or predictably. New questions often produced only partial answers, and some answers increased confusion rather than reducing it. Instead of clarity, tension accumulated. Then, at certain moments, that tension collapsed. What had felt chaotic reorganised itself into coherence all at once.

These moments were recognised as “aha” experiences — not because understanding appeared from nowhere, but because many unresolved elements finally aligned at once. Creativity, in this sense, was not the addition of new information, but the sudden reconfiguration of what was already present. Through such moments, new knowledge emerged that fundamentally changed

how the universe could be understood — carrying thinking further, faster, and more enduringly than answers that came easily.

Newton's work reveals the same dynamic. He noticed similarities between falling objects on Earth and the motion of the Moon, yet existing explanations kept these phenomena separate. As long as they remained isolated, complexity grew. His thinking moved repeatedly between these domains, linking and relinking ideas that did not yet fit. When gravity finally unified them, the insight appeared all at once — not as a constructed answer, but as a coherent whole.

The same pattern appeared in Newton's work on light. Early explanations treated colour as distortion, yet experiments repeatedly disrupted this view. His thinking jumped between observations, failed explanations, and new questions. Only after sustained tension did a new coherence form: white light contains many colours. The aha insight arrived suddenly, but it was preceded by repeated breakdowns and relational searching.

Albert Einstein's discoveries followed the same law. For years, a single question occupied his thinking: what would it be like to travel alongside a beam of light? No answer held. His mind moved repeatedly between ideas of motion, time, and measurement, linking and unlinking them without resolution.

When insight finally arrived, it did not correct light itself. It transformed the structure of understanding. Space and time were no longer separate backdrops but a single, flexible fabric that could bend. Once again, prolonged confusion collapsed into coherence.

Across these cases, a consistent pattern appears. Creative insight is not under direct control. Some principles of learning can be guided deliberately — questioning, comparison, testing, and organisation — but others cannot. Daydreaming and relational motion operate beyond control. Creative solutions do not arise from effort alone, but from sustained engagement that allows curiosity to move freely, hyperlinking across orbits until a new structure stabilises.

Creative resolution, therefore, is not a method to apply or a step to follow. It cannot be forced. It emerges only when uncertainty is tolerated long enough for coherence to reorganise itself.

Principle 6: The brain has a natural ability to unconsciously keep asking questions despite wrong answers aimed to generate creative solutions.

When that coherence finally forms, the insight is released all at once — as an “aha” moment. It feels sudden, not because it appeared from nowhere, but because complexity has finally collapsed into a single, integrated understanding.

1.8. The Architecture of Learning

The six principles are not intellectual achievements reserved for exceptional minds. They form the underlying architecture of every human brain. When viewed from a sufficiently wide vantage point, a consistent structure of learning becomes visible across centuries — from the earliest moments of not knowing to the complexity of the Information Age. Stepping back far enough reveals that these principles do not belong to astronomy, philosophy, or physics alone. Nor are they confined to any culture, era, or discipline. They repeat because they arise from a common source — a sequence initiated by curiosity, sustained through questioning and alignment, and stabilised through resolution. This choreography reflects an internal order already present within every human mind.

When we observe thinkers across history, we are not witnessing different kinds of minds, but the same human mind organising itself under different conditions. The cosmos did not teach these individuals how to think; it merely provided a field within which their inborn cognitive tendencies could interact, test alignment, and settle into coherence. Every learner entering a class carries this same DNA, the same organising potential. What differs is not the structure of thinking, but whether the conditions allow its internal forces to synchronise rather than fragment.

Learning, then, is not a school-based or study method event but a cognitive inevitability. As babies are born with the ability to walk, but still need to learn how to walk, thinking is an inborn skill that must be developed. Education's role is therefore not to supply what the mind lacks, but to create the conditions in which its internal dynamics can stabilise and become visible. Recognising this reframes both what learning is and what education is meant to do.

Once this is understood, many familiar educational debates lose their central importance. Questions about learning styles, intelligence types, motivational techniques, or instructional tricks dissolve into the background. The core issue is no longer what to add to the learner, but whether the learning environment allows the brain's existing architecture to complete its natural cycle — from curiosity and dispersion to alignment, from fragments to pattern.

When those conditions are absent, learning appears fragile. Curiosity collapses into compliance. Alignment gives way to memorisation, not because it is effective, but because it becomes the path of least resistance when the mind is prevented from reorganising meaning internally. The learner may accumulate information yet remain cognitively unsettled.

Although the six principles operate as an integrated whole, they function differently. The mind cannot guide Principle 1 (daydreaming), Principle 3 (hyperlinking), or Principle 6 (creative insight); these occur spontaneously as *aha* moments. In contrast, the brain can consciously guide Principle 2 by choosing whether to engage, as well as Principle 4 (critical questioning) and Principle 5, through which it tests, stabilises, and realigns answers to preserve coherence and build a bigger picture.

Long before schools, curricula, theories, or strategies, the human brain already knew how to learn. Yet without names, these processes remained largely invisible. This shift in visibility brings us closer to Einstein.

1.9. Einstein 101 for Dummies — The Bamboo Stick That Bent into the Universe

Before relativity became mathematics, it began as an act of imagination which can be experienced by anyone. Imagine you are standing barefoot on Earth, holding a one-metre bamboo stick upright in your hand. It feels solid, smooth, and perfectly straight. If you let go, it falls — drawn toward the Earth's centre.

Now extend the bamboo in your imagination. Let it grow upward through clouds, planets, and stars, and downward through the Earth's core, stretching light-years in both directions. The small section in your hand still appears straight. You are certain of that.

But the space through which the bamboo now extends is not empty. It is filled with massive bodies — planets, stars, galaxies — each shaping space through gravity. Across such vast distances, gravity curves the fabric of space and time itself. The bamboo does not bend because it is weak, but because it exists within curved spacetime.

What appears straight at human scale is no longer straight at cosmic scale.

This is the first lesson: space and time are not separate stages on which events occur. They form a single, curved fabric shaped by mass and energy. Objects do not move *through* space independently; they move *within* spacetime and follow its curvature. At human scale, this curvature is imperceptible. The brain senses only what is local — the near and immediate. From within the system, everything appears straight. Only from a wider, telescopic perspective does the arc become visible. This was Einstein's revolutionary insight.

Newton described gravity as a force pulling objects toward a centre. Einstein showed that gravity is not a pull acting within space, but a consequence of the geometry of spacetime itself. Matter tells spacetime how to curve; spacetime tells matter how to move. Motion follows geometry rather than force.

In this way of thinking, an object does not fall because it is being pulled straight down. It falls because it is moving along the straightest path it can in a space that is already curved. This curved space is shaped not only by the Earth, but by all matter and energy around it. From where we stand, the object seems to fall straight down. But when we look more carefully, we realise it is actually following a curved path that fits the shape of the universe itself.

When we think about it this way, the bamboo stick we imagined was never really a stick at all. It was like a beam of light showing us the shape of space. Light does not push or pull anything. It simply follows the shape that is already there. Something can look straight when we are close to it, but when we look from far away, we can see that it is actually part of a curve.

This same kind of mistake has happened in education. For a long time, learning was looked at from a very small point of view. Education was built from the idea of the one-metre bamboo stick. The curriculum was treated as a straight line to follow, supported by straight textbooks and turned into step-by-step lessons. Teaching became predictable, with very little room to change direction, as if understanding itself were supposed to move in straight lines.

To understand how learning's geometry was gradually forgotten, we must step back and trace how education evolved across eras — shaped by the needs of society, the limits of knowledge, and the tools of each age. Only from this distance do the straight lines, shortcuts, and blind spots become visible.

This is the relativity blind spot of education. Learning has been designed and evaluated from within the system itself — at human scale, local scale — where everything appears straight, sequential, and controllable. From this position, curriculum looks like a line, teaching looks like delivery, and progress looks like forward motion. But just as Newton's physics could not detect curvature from inside spacetime, traditional education cannot see the geometry of learning from inside instruction. What appears linear close up is curved across time, context, and cognition. Until education steps back far enough to see that curvature, it will continue mistaking straight lines for understanding — and motion for meaning.

Chapter 2

Education Forgot the Brain's Geometry

2.1 The Forgotten Principles of the Learning Universe

From the earliest people who watched the stars people have always learned in the same way. What changed was the context, what they were learning and how complex it was, not the way how the brain learns.

Then came schools. During the Industrial Age, education focused on producing reliable workers. In the Information Age, instead of equipping learners to become knowledge creators, the system assumed that mastering ever-expanding bodies of content was the goal. Information doubled every few years, and thinking was taken for granted rather than deliberately cultivated.

By treating the one-metre bamboo as the system, education mistook local straightness for universal truth and overlooked the curvature that governs understanding across scale. Methods hardened into truths, sequences into laws, and straight lines into the assumed shape of learning — even as evidence from science and cognition quietly revealed a more relational, curved reality beneath. What began as a useful simplification gradually solidified into an unquestioned structure.

What the education system largely missed was this first movement of learning — not only the moment attention is drawn, but the deeper orientation that allows thinking to organise itself toward meaning. In its drive to standardise, sequence, and transmit knowledge, schooling began where learning does not begin, but where it prematurely ends: with finished answers. Orientation was assumed rather than cultivated, and coherence was replaced by coverage. Instead of allowing understanding to emerge through successive reorganisation, education treated learning as something that could be delivered fully formed.